79 research outputs found

    The conformal current algebra on supergroups with applications to the spectrum and integrability

    Full text link
    We compute the algebra of left and right currents for a principal chiral model with arbitrary Wess-Zumino term on supergroups with zero Killing form. We define primary fields for the current algebra that match the affine primaries at the Wess-Zumino-Witten points. The Maurer-Cartan equation together with current conservation tightly constrain the current-current and current-primary operator product expansions. The Hilbert space of the theory is generated by acting with the currents on primary fields. We compute the conformal dimensions of a subset of these states in the large radius limit. The current algebra is shown to be consistent with the quantum integrability of these models to several orders in perturbation theory.Comment: 45 pages. Minor correction

    Random volumes from matrices

    Get PDF
    We propose a class of models which generate three-dimensional random volumes, where each configuration consists of triangles glued together along multiple hinges. The models have matrices as the dynamical variables and are characterized by semisimple associative algebras A. Although most of the diagrams represent configurations which are not manifolds, we show that the set of possible diagrams can be drastically reduced such that only (and all of the) three-dimensional manifolds with tetrahedral decompositions appear, by introducing a color structure and taking an appropriate large N limit. We examine the analytic properties when A is a matrix ring or a group ring, and show that the models with matrix ring have a novel strong-weak duality which interchanges the roles of triangles and hinges. We also give a brief comment on the relationship of our models with the colored tensor models.Comment: 33 pages, 31 figures. Typos correcte

    On AGT description of N=2 SCFT with N_f=4

    Get PDF
    We consider Alday-Gaiotto-Tachikawa (AGT) realization of the Nekrasov partition function of N=2 SCFT. We focus our attention on the SU(2) theory with N_f=4 flavor symmetry, whose partition function, according to AGT, is given by the Liouville four-point function on the sphere. The gauge theory with N_f=4 is known to exhibit SO(8) symmetry. We explain how the Weyl symmetry transformations of SO(8) flavor symmetry are realized in the Liouville theory picture. This is associated to functional properties of the Liouville four-point function that are a priori unexpected. In turn, this can be thought of as a non-trivial consistency check of AGT conjecture. We also make some comments on elementary surface operators and WZW theory.Comment: 18 pages. v2, a misinterpretation in the gauge theory side has been corrected; title and introduction were changed accordingl

    Boundary operators in minimal Liouville gravity and matrix models

    Full text link
    We interpret the matrix boundaries of the one matrix model (1MM) recently constructed by two of the authors as an outcome of a relation among FZZT branes. In the double scaling limit, the 1MM is described by the (2,2p+1) minimal Liouville gravity. These matrix operators are shown to create a boundary with matter boundary conditions given by the Cardy states. We also demonstrate a recursion relation among the matrix disc correlator with two different boundaries. This construction is then extended to the two matrix model and the disc correlator with two boundaries is compared with the Liouville boundary two point functions. In addition, the realization within the matrix model of several symmetries among FZZT branes is discussed.Comment: 26 page

    The Impact of Non-Equipartition on Cosmological Parameter Estimation from Sunyaev-Zel'dovich Surveys

    Full text link
    The collisionless accretion shock at the outer boundary of a galaxy cluster should primarily heat the ions instead of electrons since they carry most of the kinetic energy of the infalling gas. Near the accretion shock, the density of the intracluster medium is very low and the Coulomb collisional timescale is longer than the accretion timescale. Electrons and ions may not achieve equipartition in these regions. Numerical simulations have shown that the Sunyaev-Zel'dovich observables (e.g., the integrated Comptonization parameter Y) for relaxed clusters can be biased by a few percent. The Y-mass relation can be biased if non-equipartition effects are not properly taken into account. Using a set of hydrodynamical simulations, we have calculated three potential systematic biases in the Y-mass relations introduced by non-equipartition effects during the cross-calibration or self-calibration when using the galaxy cluster abundance technique to constraint cosmological parameters. We then use a semi-analytic technique to estimate the non-equipartition effects on the distribution functions of Y (Y functions) determined from the extended Press-Schechter theory. Depending on the calibration method, we find that non-equipartition effects can induce systematic biases on the Y functions, and the values of the cosmological parameters Omega_8, sigma_8, and the dark energy equation of state parameter w can be biased by a few percent. In particular, non-equipartition effects can introduce an apparent evolution in w of a few percent in all of the systematic cases we considered. Techniques are suggested to take into account the non-equipartition effect empirically when using the cluster abundance technique to study precision cosmology. We conclude that systematic uncertainties in the Y-mass relation of even a few percent can introduce a comparable level of biases in cosmological parameter measurements.Comment: 10 pages, 3 figures, accepted for publication in the Astrophysical Journal, abstract abridged slightly. Typos corrected in version

    Nonlinear W(infinity) Algebra as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity

    Full text link
    We investigate the asymptotic symmetry algebra of (2+1)-dimensional higher spin, anti-de Sitter gravity. We use the formulation of the theory as a Chern-Simons gauge theory based on the higher spin algebra hs(1,1). Expanding the gauge connection around asymptotically anti-de Sitter spacetime, we specify consistent boundary conditions on the higher spin gauge fields. We then study residual gauge transformation, the corresponding surface terms and their Poisson bracket algebra. We find that the asymptotic symmetry algebra is a nonlinearly deformed W(infinity) algebra with classical central charges. We discuss implications of our results to quantum gravity and to various situations in string theory.Comment: 25 pages, no figure; v2. minor corrections, references added, v3. JHEP published versio
    corecore